	A Tx1		<i>А</i> ТхЗ	
m1 = 2000	$PrK = x$ $PuK = a =$ $= g^{x} \mod p$ $Cert_{A} \text{ on } a$	m3 = 1000 €	$PrK_1 = x_1$ $PuK_1 = a_1 =$ $= g^{x1} \mod p$	m5 = 4000 Sign(x_1 , m5) = = $\sigma_1 = (r_1, s_1)$
	Addr _A	1	→ Addr1 A Tx4	STO Investment Company (IC) Requires to invest
<u>m6 = 1000</u> →	$PrK_2 = x_2$ $PuK_2 = a_2 =$ $= g^{x^2} \mod p$	m8 = 3000	$PrK_2 = x_2$ $PuK_2 = a_2 =$ $= g^{x^2} \mod p$	at least 5000 m9 = 3000 Sign(r_2, m9) =
m7 = 2000	Addr2		Addr2	$= \sigma_2 = (r_2, s_2)$

In Monero blockchain for anonymization Alice is using Ring Signature, instead procedure presented above. It is interresting to compare the realization effectivity of procedure presented above and procedure based on Ring Signature.

Compare realization effectivity of DEF Schnorr multisignature with ECC ring signature computing the number of Discrete Exponent Function Operations - DEFO: $a = g^u \mod p$ Elliptic Curve Cryptography Operations - ECCO: EC point multiplication by integer $z^*G = P$.

> Anonymity disclosing for Investment Company (IC) Deanonymization for Authenticity

Alice has private key $PrK_A = x$ and public key $PuK_A = a = g^X \mod p$. Alice has a certificate $Cert_A$ issued by Certificate Authority (CA) on her $PuK_A = a$. Alice must prove to IC that $PuK_1 = a_1 = g^{x_1} \mod p$ and $PuK_2 = a_2 = g^{x_2} \mod p$ together with Addr1 and Addr2 belongs to her. This means that she must prove that she knows x_1 and x_2 corresponding to

 $PuK_1 = a_1 = g^{x1} \mod p$ and $PuK_2 = a_2 = g^{x1} \mod p$.

To save the computation resources Alice does not proves the knowledge of every x_1 and x_2 .

Alice proves that she knows $x_{12} = x_1 + x_2$ instead since to guess x_{12} without the knowledge of x_1 and x_2 is infeasible.

Alice realizes the Non-Interactve Zero knowledge Proof (NIZKP) of knowledge of x_{12} .

Then she computes h-value: $H' = H(a_1 || Addr1 || a_2 || Addr2 || r_p)$

 $u <-- \operatorname{randi}(p-1).$ $r_p = g^u \mod p.$ $h' = \mathbf{H}(H'||r_p) = \mathbf{H}(a_1||\mathbf{Addr1}||a_2||\mathbf{Addr2}||r_p).$ $s_p = u + x_{12}h' \mod (p-1).$ Alice sends the value $\sigma_P = (r_P, s_P)$ to IC.

To reveal her identity Alice signs σ_P with her $\Pr{K_A} = x$ which corresponds to her $= g^x \mod p$ and sends her Certificare Cert_A to IC.

 $\operatorname{Sign}(\mathbf{x}, \mathbf{\sigma}_{P}) = \mathbf{\sigma} = (\mathbf{r}, \mathbf{s}).$

- **v** <-- randi(**p**-1).
- $r = g^{\nu} \mod p$.
- $h = \mathbf{H}(\boldsymbol{\sigma}_P || \boldsymbol{r}).$
- $s = v + xh \mod (p-1)$.
- Alice sends the value $\sigma = (r, s)$ to IC.

 $\sigma = (r, s)$ $\sigma = (r, s)$ $PuK_A = a; Cert_A$

Addr_A

- 1. IC verifies if $s = /= S_{12}$.
- 2. IC verifies Cert_A on *a* and Alice signature on $\sigma = (r, s)$ on $\sigma_P = (r_P, s_P)$.
- $\frac{g^s \mod p}{V1} = \frac{ra^h \mod p}{V2}$
- 2. IC verifies Alice signature on $\sigma_P = (r_P, s_P)$ signed by $\mathbf{x}_{12} = \mathbf{x}_1 + \mathbf{x}_2$.
- 3. IC verifies if (Eq. 2) is valid $g^{S12} \mod p = R_{12} * (a_1)^{h_1} * (a_2)^{h_2} \mod p$.
- 3. IC provides Alice with STO according to the sum 7000.

Compare deanonymization with deanonymization used for anonymization with Ring Signatures in Monero.

According to the Birthday Paradox the probability **Prob**₂ to guess **x**₁₂ when **x**₁₂ is a sum mod **p** of two secret numbers **x**₁ and **x**₂ having **n**=2040 bits is negligible, i.e.

Prob₂ < 2⁻ʰ/²</mark>. Lina

In the case of sum of **k** private keys the probability **Prob**_k satisfies inequality **Prob**_k < $2^{-n/k}$. If verification passes then IC transfers the interest on investments to Alice account. The material regarding NIZKP is included in schemes and explanation is presented below.

Additional material: of Non-Interactive Zero Knowledge Proof (NIZKP).

The technique presented above has an essential flaw.

The anyone having $PrK_{Im} = x_{Im}$ and public key $PuK_{Im} = a_{Im}$ can impersonate the actual Addr1 and Addr2 holder and redirect the interest on investments to his/her account by creating new Addr_{Im} = F(PuK_{Im}) by obtaining the certificate Cert_{Im} on PuK_{Im}.

Then Impersonator having Tx2 and Tx4 data together with $PuK_1 = a_1$ and $PuK_2 = a_2$ can sign Tx2 and Tx4 with his/her PrK_{Im} by computing $\sigma_{Im} = (r_{Im}, s_{Im})$.

Then Impersonator sends ($\sigma_{Im} = (r_{Im}, s_{Im})$, $PuK_{Im} = a_{Im}$, $Cert_{Im}$ and $Addr_{Im}$) as actual Addr1 and Addr2 holder Alice did.

After IC verification the Impersonator is waiting when IC transfers the interest on investments to his/her account represented by Addr_{Im}.

The solution of this problem is the realization of Non-Interactive Zero Knowledge Proof (**NIZKP**) by Alice proving that she knows her generated $PrK_1 = x_1$ and $PrK_2 = x_2$.

The **NIZKP** is as an additional operation is included in the schemes above.

The details of **NIZKP** realization is left as an exercise.

Anonymity and authenticity simulation

>> x=int64(randi(p-1)) x = 257726155	>> x1=int64(randi(p-1)) x1 = 156758073	>> x2=int64(randi(p-1)) x2 = 93240757
>> a=mod_exp(g,x,p)	>> a1=mod_exp(g,x1,p)	<pre>>> a2=mod_exp(g,x2,p)</pre>
a = 32920391	a1 = 15617773	a2 = 92735335
>> AddrA=hd28('32920391')	>> Addr1=hd28('15617773')	>> Addr2=hd28('92735335')
AddrA = 126423499	Addr1 = 32691790	Addr2 = 186632019
	<pre>>> x=int64(randi(p-1)) x = 257726155 >> a=mod_exp(g,x,p) a = 32920391 >> AddrA=hd28('32920391') AddrA = 126423499</pre>	<pre>>> x=int64(randi(p-1)) >> x1=int64(randi(p-1)) x = 257726155 x1 = 156758073 >> a=mod_exp(g,x,p) >> a1=mod_exp(g,x1,p) a = 32920391 a1 = 15617773 >> AddrA=hd28('32920391') >> Addr1=hd28('15617773') AddrA = 126423499 Addr1 = 32691790</pre>

Tx2='In21=4000 Ex21=4000 Addr1'	Tx4='In41=3000 Ex41=3000 Addr1'
>> u1=int64(randi(p-1))	>> u2=int64(randi(p-1))
u1 = 50037375	u2 = 190308111
>> r1=mod_exp(g,u1,p)	>> r2=mod_exp(g,u2,p)
r1 = 32904517	r2 = 22463608
>> con=concat(Tx2,r1)	>> con=concat(Tx4,r2)
con = In21=4000 Ex21=4000 Addr132904517	con = In41=3000 Ex41=3000 Addr122463608
>> h1=hd28(con)	>> h2=hd28(con)
h1 = 64943318	h2 = 26322703
>> s1=mod(u1+x1*h1,p-1)	>> s2=mod(u2+x2*h2,p-1)

<pre>// III=IIUZO(0011)</pre>	~ 112-11020(001)
h1 = 64943318	h2 = 26322703
>> s1=mod(u1+x1*h1.p-1)	>> s2=mod(u2+x2*h2.p-1)
s1 = 234649183	s2 = 61742096
51 - 254045105	32 - 017 +2030

>> R12=mod(r1*r2,p)	>> a1 h1=mod exp(a1,h1,p)	>> R12ma1 h1=mod(R12*a1 h1,p)
R12 = 92919544	a1 h1 = 168145239	R12ma1 h1 = 241090947
>> S12=mod(s1+s2,p-1)		
S12 = 27956261	a2_h2 = 55254133	R12ma1_h1ma2_h2 = 91640974 = 91640974 = V2
>> g_S12=mod_exp(g,S12,p)		
g_S12 = 91640974 = V1		

Schnorr-Multi-Signature is valid since V1 = V2 = 91640974

Deanonymization against IC

> con1=concat(a1.Addr1)	>> u=int64(randi(p-1))	
con1 = 1561777332691790	u = 218160208	
>> con2=concat(a2,Addr2)	>> r=mod_exp(g,u,p)	
con2 = 92735335186632019	r = 76047239	
>> con12=concat(con1,con2)	>> conHHr=concat(HH,r)	% H' <i>r</i>
con12 = 156177733269179092735335186632019	conHHr = 15047739676047239	% HH== H '
>> HH=hd28(con12)	>> h=hd28(conHHr)	
HH = 150477396	h = 114895503	
	>> s=mod(u+x*h,p-1)	

s = 107897009

$\begin{array}{c} g^s \mod p = ra^h \mod p. \quad (\text{Eq.1}) \\ \hline \text{V1} & \text{V2} \end{array}$

T T -		
• • •		
V		
v 1		

>> a h=mod exp(a.h.p)
a h = 202702724
a_n = 202/02/34
>> V2=mod(r*a_h,p)
V2 = 18634187

Till this place